Modular invariance, modular identities and supersingular
نویسنده
چکیده
To every k-dimensional modular invariant vector space we associate a modular form on SL(2,Z) of weight 2k. We explore number theoretic properties of this form and found a sufficient condition for its vanishing which yields modular identities (e.g., Ramanujan-Watson’s modular identities). Furthermore, we focus on a family of modular invariant spaces coming from suitable two-dimensional spaces via the symmetric power construction. In particular, we consider a two-dimensional space spanned by graded dimensions of level one modules for the affine Kac-Moody Lie algebra of type D (1) 4 . In this case the reduction modulo prime p = 2k + 3 ≥ 5 of the modular form associated to the k-th symmetric power classifies supersingular elliptic curves in characteristic p. This construction also gives a new interpretation of certain modular forms studied by Kaneko and Zagier.
منابع مشابه
Hecke Operators for Weakly Holomorphic Modular Forms and Supersingular Congruences
We consider the action of Hecke operators on weakly holomorphic modular forms and a Hecke-equivariant duality between the spaces of holomorphic and weakly holomorphic cusp forms. As an application, we obtain congruences modulo supersingular primes, which connect Hecke eigenvalues and certain singular moduli.
متن کاملSUPERSINGULAR PRIMES FOR POINTS ON X0(p)/wp
For small odd primes p, we prove that most of the rational points on the modular curve X0(p)/wp parametrize pairs of elliptic curves having infinitely many supersingular primes. This result extends the class of elliptic curves for which the infinitude of supersingular primes is known. We give concrete examples illustrating how these techniques can be explicitly used to construct supersingular p...
متن کاملInvestigation the status of instructional design with modular method in medical education
Background and Goal: Modular method is a form of in-service training which provides job skills into a form of independent training of audiences. Each of modular provides specific skill and at the same time besides the other modular led to a new and comprehensive skill. In fact, any educational modular is a set of knowledge, attitudes and skills which by using them it can be possible to do ...
متن کاملFixed Point Results for Cyclic (α,β)-Admissible Type F-Contractions in Modular Spaces
In this paper, we prove the existence and uniqueness of fixed points for cyclic (α,β)-admissible type F-contraction and F−weak contraction under the setting of modular spaces, where the modular is convex and satisfying the ∆2-condition. Later, we prove some periodic point results for self-mappings on a modular space. We also give some examples to s...
متن کاملFixed points for Banach and Kannan contractions in modular spaces with a graph
In this paper, we discuss the existence and uniqueness of xed points for Banach and Kannancontractions dened on modular spaces endowed with a graph. We do not impose the Δ2-conditionor the Fatou property on the modular spaces to give generalizations of some recent results. Thegiven results play as a modular version of metric xed point results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008